High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate.

نویسندگان

  • Yu Lu
  • Gang L Liu
  • Luke P Lee
چکیده

The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir-Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Raman enhancement factor of a single tunable nanoplasmonic resonator.

We have developed a novel technique to precisely determine the Raman enhancement factor in single nanoplasmonic resonators (TNPRs). TNPRs are lithographically defined metallodielectric nanoparticles composed of two silver disks stacked vertically, separated by a silica layer. At resonance, the local electromagnetic fields are enhanced at the TNPR surface, making it an ideal surface-enhanced Ram...

متن کامل

Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy.

Plasmonic systems based on metal nanoparticles on a metal film have generated great interest for surface-enhanced Raman spectroscopy (SERS) chemical sensors. In this study, we describe the fabrication of ultrasensitive SERS substrates based on high-density gold nanostar assemblies on silver films with tailored surface plasmons, where multiple field enhancements from particle-film and interparti...

متن کامل

Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates

This work describes novel surface-enhanced Raman scattering (SERS) substrates based on ferroelectric periodically poled LiNbO3 templates. The templates comprise silver nanoparticles (AgNPs), the size and position of which are tailored by ferroelectric lithography. The substrate has uniform and large sampling areas that show SERS effective with excellent signal reproducibility, for which the fab...

متن کامل

Microstructural Characterization of Silver Nanoparticles for Bioimaging Applications

Silver nanoparticles are emerging as a powerful tool in bioimaging applications owing to their unique plasmonic properties i.e., extremely high molar extinction coefficients, resonant Rayleigh scattering and enhanced local electromagnetic fields [1]. Through the optimization of these properties, by controlling composition, size, shape, and interparticle spacing of nanoparticles and their assemb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2005